Powell Property Wetland and Stream Mitigation Project Bertie County, NC

2011 Annual Monitoring Report Year 3

NCEEP Project Number D06065-B Chowan River Basin USGS Catalog Unit 03010203

Submitted to NCDENR/Ecosystem Enhancement Program 2728 Capital Blvd. Raleigh, NC 27604

Date: December, 2011

Monitoring: Albemarle Restorations, LLC P. O. Box 176 Fairfield, NC 27826

Table of Contents

Executive Sur	nmary	
I. Project Back	kground	
1.0	Project Objectives	
2.0	Project Structure, Restoration Type and Approach	
3.0	Location and Setting	
4.0	Project History and Background	5
5.0	Monitoring Plan View	6
II. Project Con	ndition and Monitoring Results	
1.0	Vegetation Assessment	
1.1	Vegetation Discussion and Problem Areas	
2.0	Wetland Assessment	10
2.1	Wetland Discussion and Problem Areas	10
2.15	Flow	10
2.2	Wetland Problem Areas Plan View (Integrated)	
3.0	Project Success Discussion	14
III. Methodolo	ogy Šection	

List of Tables

Table ES-1. Project Success Summary	
Table I. Project Restoration Components	
Table II. Project Activity and Reporting History	5
Table III. Project Contacts	
Table IV. Project Background	
Table V. Species for Each Community Type	
Table VI. Wetland Criteria Attainment by Community Type	14
Table C-1 Hydrologic Monitoring Results	Appendix A

List of Figures

Figure 1. Composite Vicinity Map	
Figure 2. Monitoring Plan View: Gauges and Vegetation Plots	
Figure 3. Monitoring Plan View: Soils, Contours and Plant Communities	
Figure F1. Water Flow at Gauges 2, 5 & 9 April	
Figure F2. Water Flow at Gauges 2, 5 & 9 August	
Figure 4. Composite Vegetation and Hydrology Monitoring Results	

Appendices

Appendix A	Vegetation Data and Site Photos
Appendix B	Geomorphologic Raw Data – N/A
Appendix C	Hydrologic Data Tables
Appendix D	Composite Vegetation and Hydrology Monitoring Results

Executive Summary

The Powell Property Wetland and Stream Mitigation Site is a headwater riverine wetland and stream mitigation project located southeast of Powellsville, in Bertie County, North Carolina. It was constructed by Albemarle Restorations, LLC, under contract with EEP to provide 48.4 acres of riverine wetland mitigation credits and 3,310 linear feet of stream mitigation credits in the Chowan River Basin. Construction activities, in accordance with the approved restoration plan, began in June of 2008, and were completed in January of 2009. Planting took place in January of 2009.

Due to unsuccessful hydrology around Gauges 6 and 7 in 2010, subsoiling was done in September of 2010 as a remedial treatment to break up compacted soil and improve hydrology. Afterward, two additional water level monitoring gauges were installed around Gauge 7, bringing the total number of gauges on the project to twelve. They are located at varying elevations throughout the riverine wetland and stream valley areas of the site to measure surface and subsurface water elevations. Two more gauges are located in the headwater stream reference area to monitor flow and water level within the reference stream system. All twelve gauges on the project site indicated successful wetland hydrology for a minimum of 5% of the growing season. All but one gauge measured a hydroperiod of 8% or greater. Two separate flow events were documented during 2011.

A total of ten vegetation monitoring plots are located on the site, seven in the riverine wetland areas and three more situated to monitor the swamp run vegetation. One plot is entirely within the boundaries of the swamp run and two more are located so as to share both land forms. Each plot is a 10m X 10m square, as recommended by the CVS-EEP protocol for recording vegetation sampling. All ten plots met the third year survival success criterion which is a minimum of 320 stems per acre.

Table ES-1 shows the levels of success attained by each of the water level monitoring gauges and the vegetation plots. The success criterion for hydrology is maintained groundwater levels within 12 inches of the soil surface for 5% to 8% of the growing season (12 to 19 consecutive days). Table C-1 in Appendix C has a detailed breakdown of hydrologic success.

				Tabl	e ES-1. I	Project S	Success	Summai	сy						
	Gauges show longest hydroperiod as % of growing season, Plots show Stems per Acre							Percent							
St	uccess	1	2	3	4	5	6	7	7A	7B	8	9	10	Success	
Year 1	Gauges %	6	15	6	2	15	2	3		ət İlled	lled	39	24	14	70%
2009	Plot SPA	577	412	495	454	412	371	371	Not			701	454	454	100%
Year 2	Gauges %	8	11	7	6	15	3	2	Not Installed	16	17	12	80%		
2010	Plot SPA	526	364	405	445	405	405	324			647	364	405	100%	
Year 3	Gauges %	13	26	26	9	26	26	8	6	8	26	26	21	100%	
2011	Plot SPA	495	330	330	371	495	371	330	No	No Plot	577	371	454	100%	
Year 4	Gauges %														
2012	Plot SPA								No	Plot					
Year 5	Gauges %														
2013	Plot SPA								No	Plot					

Gauge values shown in red did not meet minimum of 5% of the growing season

Powell Property Wetland Mitigation Project Albemarle Restorations, LLC 2011 Monitoring - Year 3 of 5

I. <u>Project Background</u>

1.0 <u>Project Objectives</u>

The goal of the Powell Property Mitigation Project was to create a riverine wetland system typically found in the middle to upper reaches of first or zero order tributary systems. The project is to serve as compensation for wetland loss in the Chowan River Basin. The restoration plan was developed and implemented to eliminate pattern drainage and restore topography and hydrology that more closely resembled that of similar undisturbed land. Construction resulted in the development of a broad, branched, frequently flooded swamp run following a historical path as evidenced by archived aerial photographs and signature topography. Subsequent planting was designed to restore a wetland forest ecosystem that is typically found in the immediate area characteristic of similar soils, topography and hydrology.

Ecological benefits of the restored riparian headwater system and its associated riverine wetlands are the following:

- 1. Water quality improvements, including nutrient, toxicant and sediment retention and reduction, increasing dissolved oxygen levels, as well as reducing excessive algae growth, and reducing surface water temperatures in receiving waters by providing permanent shading in the form of a shrub/scrub and forested headwater wetland system.
- 2. Wildlife habitat enhancement by adding to the existing adjacent forested areas creating a continuous travel corridor between habitat blocks and providing a wide range of habitat areas (open water, emergent, shrub/scrub and forested) for amphibians, reptiles, birds, insects and mammals.
- 3. Flood flow attenuation during storm events which reduces sedimentation and erosion downstream, and improves long term water quality within the Chowan River.
- 4. Passive outdoor recreation and educational opportunities for the landowner and the surrounding community.

2.0 <u>Project Structure, Restoration Type, and Approach</u>

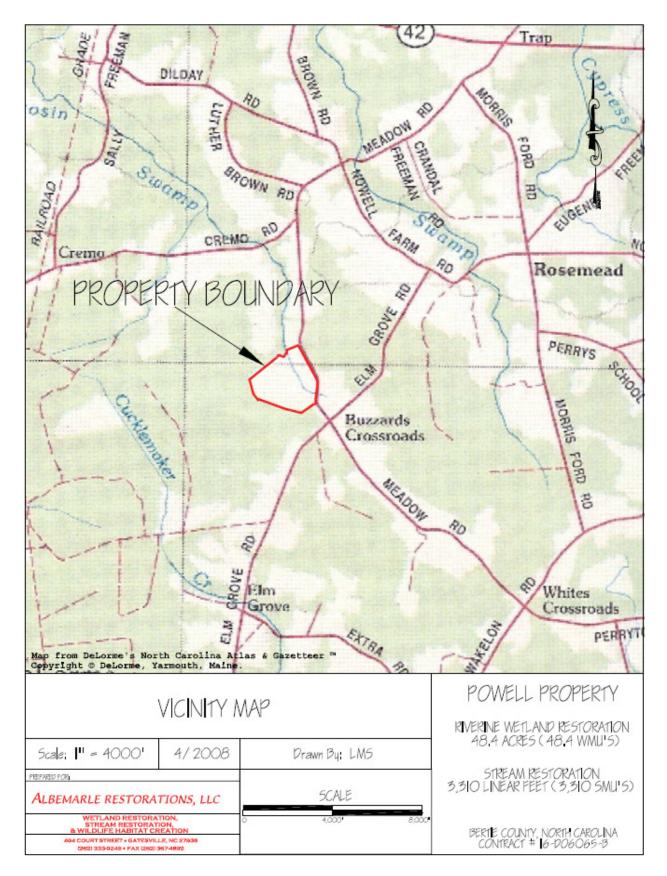

Table I lists the estimated wetland acreage to be restored on the Powell Property. The mitigation plan provides for the restoration of 48.4 acres of riverine wetlands and 3,310 linear feet of stream (swamp run) restoration. Prior to construction, the easement area was used entirely for row crop agriculture, primarily soy beans, corn, cotton and tobacco. The agricultural fields were drained by several ditches that traversed the site and one main drainage ditch that emptied into Quioccosin Swamp. Construction was done in accordance with the approved restoration plan and completed in January of 2009. Native tree and shrub species were planted in January of 2009 and the resulting riverine system is designed to emulate natural swamp run systems found within the Chowan River Basin.

Table I. Project Restoration Components Powell Wetland and Stream Mitigation Site/EEP #D06065-B					
Restoration Type	Pre-Existing Acres/Linear Feet	Post Construction Acres/ Linear Feet	Credit Ratio (Restoration : WMU)	Total WMU's/SMU's	
Riverine Wetland	0.0 acres	48.4 acres	1:1	48.4 WMUs	
Stream (Swamp Run)	0.0 linear feet	3,310 linear feet	1:1	3,310 SMUs	

3.0 Location and Setting

The Powell Property Mitigation Site is located in Bertie County, just north of Buzzard's Crossroads on Meadow Road (approximately 4.6 miles southeast of Powellsville). The easement area is situated on the eastern portion of the Powell farm and adds contiguous swamp run and forested wetlands to Quioccosin Swamp which flows to the Wiccacon River, a tributary of the Chowan River. The surrounding area is primarily forest and agricultural land with residential properties as a minor component.

Figure 1 is a location map for the project site. Directions to the site are as follows: from Powellsville (Hwy. 42), travel south on Sally Freeman Rd., turn left on Dilday Rd., right on Luther Brown Rd., then right on Meadow Rd. Access to the site is approximately 2 miles from this intersection, on the right.

Powell Property Wetland Mitigation Project Albemarle Restorations, LLC 2011 Monitoring - Year 3 of 5

4.0 **Project History and Background**

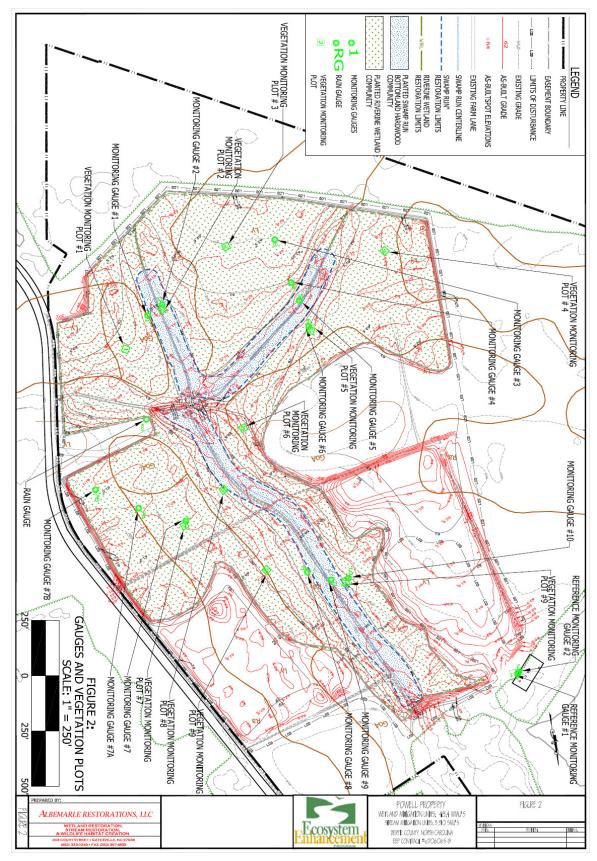
Table II provides the history of data collection and actual completion of various milestones of the Powell Property Wetland Mitigation Site.

Table II. Project Activity and Reporting HistoryPowell Wetland and Stream Mitigation Project/EEP #D06065-B				
Activity or Report	Data Collection Complete	Actual Completion or Delivery		
Restoration Plan	January 2008	May 2008		
Final Design -90%	January 2008	May 2008		
Construction	N/A	January 2009		
Temporary S & E mix applied to entire project area	N/A	January 2009		
Permanent seed mix applied to entire project area	N/A	January 2009		
Containerized and Bare Root Planting	N/A	January 2009		
Mitigation Plan/As-built	April 2009	June 2009		
Year 1 monitoring	September 2009	March 2010		
Year 2 monitoring	August 2010	August 2010		
Year 3 monitoring	September 2011	December 2011		
Year 4 monitoring				
Year 5 monitoring				

Points of contact for the various phases of the Powell Project are provided in Table III.

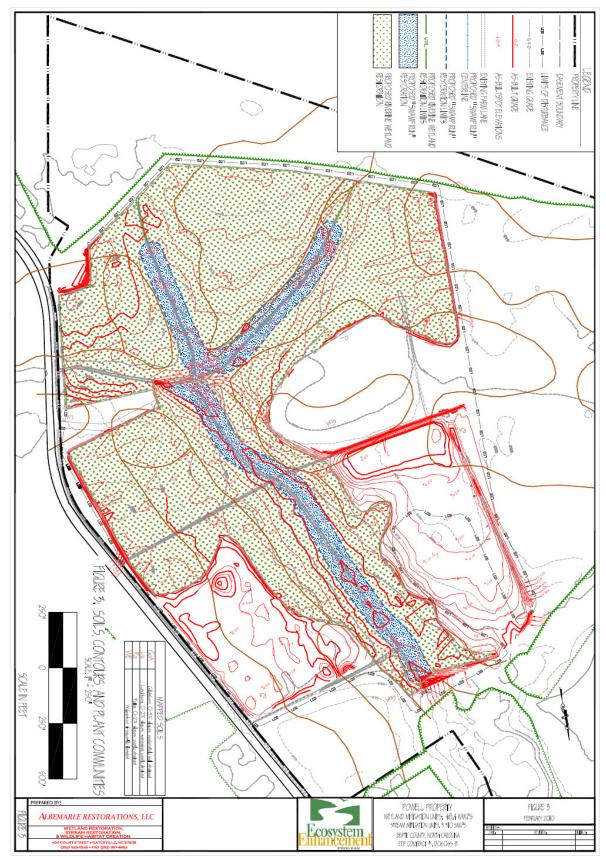
Table III. Project Contacts			
Powell V	Vetland and Stream Mitigation Site/EEP #D06065-B		
Designer	Ecotone, Inc. (Scott McGill 410-692-7500)		
Primary Project design POC	1204 Baldwin Mill Road		
	Jarrettsville, MD 21804		
Construction Contractor	Armstrong, Inc. (Tink Armstrong 252-943-2082)		
Construction contractor POC	P. O. Box 96		
	25852 US Hwy 64		
	Pantego, NC 27860		
Planting Contractor	Carolina Silvics, Inc.		
Planting contractor POC	908 Indian Trail Road		
	Edenton, NC 27932		
	Mary-Margaret McKinney (252-482-8491)		
Seeding Contractor	Armstrong, Inc. (Tink Armstrong 252-943-2082)		
Seed planting contractor POC	P. O. Box 96		
	25852 US Hwy 64		
	Pantego, NC 27860		
Seed mix sources	Ernst Conservation Seeds, LLP, Meadville, PA		
Nursery stock suppliers	Arborgen, Blenheim, SC, Native Roots, Clinton, NC		
Monitoring Performers	Woods, Water and Wildlife, Inc. (Ashby Brown 757-651-3162)		
Wetland and Vegetation POC	P. O. Box 176		
	Fairfield, NC 27826		

Project background information for the Powell project is provided in Table IV.


Table IV. Project Background Powell Wetland and Stream Mitigation Site/EEP #D06065-B				
Project County Bertie County				
Drainage Area	Approximately 871 Acres			
Drainage impervious cover estimate (%)	0			
Physiographic Region	Coastal Plain			
Ecoregion	8.3.5 Southeastern Plains			
Rosgen Classification of As-built	N/A			
Cowardin Classification	PSS, PFO			
Dominant Soil Types	Goldsboro, Lynchburg			
Reference site ID	Quioccosin Swamp			
USGS HUC for Project and Reference	03010203			
NCDWQ Sub-basin for Project and Reference	03-01-01			
NCDWQ classification for Project and Reference	С			
Any portion of any project segment 303d listed? No				
Any portion of any project segment upstream of a 303d listed segment? Yes, Wiccacon River				
Reasons for 303d listing or stressor? Non-Point Source				
% of project easement fenced None				

5.0 <u>Monitoring Plan View</u>

A total of twelve water level monitoring gauges are installed across the site. These gauges are suspended in two-inch pvc pipe that is set from two to four feet vertically in the ground. The gauges have been located to assess the groundwater levels throughout the year at various elevations and topographies within the site. Two more gauges are installed in an offsite riverine wetland area to serve as references for a naturally functioning riverine wetland and headwater swamp run. In addition, there is a rain gauge onsite to capture and record precipitation.


Vegetation monitoring is accomplished by surveying the ten permanent sampling plots. The plots are ten meters square and are situated to give an accurate sample of the planted and natural woody vegetation in both the riverine and swamp run communities. For each site, the data recorded matches that required of the *CVS-EEP Protocol for Recording Vegetation*, v 4.0, 2006, level 1-2.

Figures 2 and 3 provide plan views of the site showing the location of all monitoring features including gauges, sampling plots and the rain gauge as well as the vegetative communities.

Powell Property Wetland Mitigation Project Albemarle Restorations, LLC 2011 Monitoring - Year 3 of 5

7

Powell Property Wetland Mitigation Project Albemarle Restorations, LLC 2011 Monitoring - Year 3 of 5

8

II. <u>Project Condition and Monitoring Results</u>

1.0 <u>Vegetation Assessment</u>

The vegetation success criterion was developed in accordance with the CVS-EEP protocol. The Powell project was designed to include both riverine and bottomland hardwood plant communities. The project was planted with a mixture of tree and shrub species that would resemble that of naturally occurring swamp runs and adjacent riverine wetlands in the local area. The run and area immediately adjacent were planted heavily with cypress, willow and tupelo. The riverine wetland zone beyond the swamp run is populated by a broader mix of native hydrophytic tree and shrub species. The species mix was based on the vegetation noted at the reference site and all species are classified from FAC to OBL (Table V). The site was planted at a rate of 600 stems per acre in January of 2009.

Table V. Species by Community Type Powell Wetland and Stream Mitigation Project/EEP #D06065-B Total Forested Wetland 55.9 Acres						
Common Name Scientific Name Wetland Indicator Stat						
	Trees					
Bald Cypress	Taxodium distichum	OBL				
Water tupelo	Nyssa aquatica	OBL				
Swamp Black Gum	Nyssa biflora	FAC				
Willow Oak	Quercus phellos	FACW-				
Swamp White Oak	Quercus bicolor	FACW+				
Pin Oak	Quercus palustris	FACW				
Water Oak	Quercus nigra	FAC				
Swamp Chestnut Oak	Quercus michauxii	FACW-				
	Shrubs					
Staggerbush	Lyonia mariana	FAC				
Tag Alder	Alnus serrulata	FACW+				
Highbush Blueberry	Vaccinium corymbosum	FACW				
Sweet Pepperbush	Clethra alnifolia	FACW				
Virginia Sweetspire	Itea virginica	FACW+				
Button Bush	Cephalanthus occidentalis	OBL				
Swamp Bay	Persea palustris	FACW				
Inkberry	Ilex glabra	FACW				
Wax Myrtle	Myrica cerifera	FAC+				
Black Willow	Salix nigra	OBL				
Sweetbay Magnolia	Magnolia virginiana	FACW+				

1.1 <u>Vegetation Discussion and Problem Areas</u>

All ten plots met the Year 3 success criterion of a minimum of 320 stems per acre. Over the entire project, the survival rate averaged 412 live stems per acre. Annual mortality continues to be light; the survival rate in 2010 averaged 429 stems per acre. Growth is very good as well as is the overall health of the forested community.

2.0 Wetland Assessment

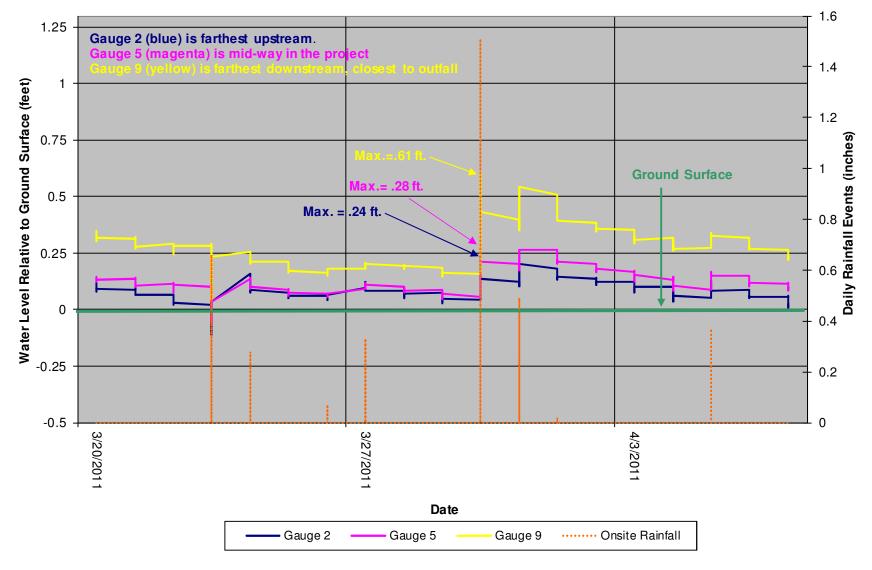
The hydrologic success criterion for any gauge is to achieve a minimum of 12 to 19 consecutive days where the groundwater level is within 12 inches of the soil surface during the growing season. This represents 5% to 8% of the growing season which for this site runs from March 22 to November 8, a period of 231 days (WETS Table for Lewiston, NC). All but one gauge, 7A, measured an 8% or longer hydroperiod during the year. Gauge 7A measured a 6% hydroperiod.

Because of inadequate hydroperiods around Gauges 6 and 7 in 2009 and 2010, those areas of the project were subsoiled in September of 2010 and replanted in January of 2011. Refer to Figure 4 in Appendix D for the location and extent of the subsoiling. To further identify the extent of the potential hydrology problems around Gauge 7, two additional gauges were installed in that area of the project. Refer to Figure 2 on page 7 for the locations of Gauges 7A and 7B. Gauges 7 and 7B, which is the farthest from the swamp run, measured a hydroperiod of 8% or greater. Gauge 7A, which is situated between them, measured a 6% hydroperiod. Gauge 6 measured a 26% hydroperiod.

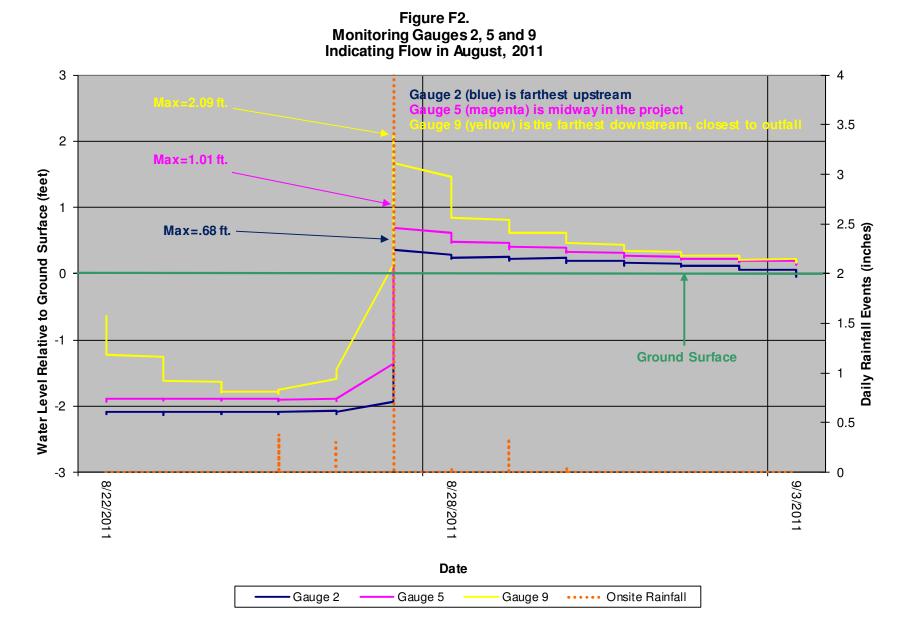
2.1 <u>Wetland Discussion and Problem Areas</u>

Rainfall for the first seven months of the year approximated normal rainfall patterns with only minor deficits recorded for a few of those months. As a result, all twelve monitoring gauges measured a significant hydroperiod in April of 2011. Near the end of September Hurricane Irene produced heavy rainfall that successfully recharged the watershed and produced another significant hydroperiod.

The subsoiling done in September of 2010 appears to have corrected the hydrologic problems around Gauges 6 and 7. Gauge 6 showed a remarkable improvement over the previous two years, measuring a 26% hydroperiod. Gauges 7A and 7B were added at the suggestion of EEP in order to further identify the extent of the unsuccessful hydrology in the portion of the project around Gauge 7. It appears that the subsoiling was successful in correcting the compacted soils. Gauge 7B which is nearest to the project boundary measured a 20-day hydroperiod in April when rainfall was near normal with only a minor deficit (.51" cumulative). That corresponds to an 8.6% hydroperiod which would suggest that under normal rainfall conditions, this area of the project will show successful hydrology.


2.15 <u>Flow</u>

Refer to Figures F1and F2 which are composite charts for Gauges 2, 5 & 9, for the following discussion of evidence of flow within the swamp runs. Figure F1 is a composite chart showing a period of flow in April, 2011 when the water level at Gauge 9 hit a maximum height of .61 feet above ground level which is a little more than 7 inches. Gauges 2 and 5 each measured water at approximately 3 inches above ground level. Flow on April 1, 2011 is video documented and correlates well to the data shown in Figure 1. This was a relatively minor flow event but prior to April, rainfall had been light and the reference area had very little water moving through it (refer to the photo in Appendix A).


Figure F2 is a composite chart showing flow in late August, 2011 after Hurricane Irene produced enough rainfall to recharge the watershed. As can be seen on the hydrographs, prior to that storm, the site was in a very dry summer condition. Water levels at Gauge 9 (farthest downstream) reached a maximum of 2.09 feet above ground level as a result of the storm. This event produced flow through the entire project and over the entire length of both branches at the upstream end of the project. Video evidence confirms this.

By comparison, Reference Gauge 11, which is in the center of the reference swamp run, showed water levels above ground that were similar to those at Gauge 9 during these two flow events, and the duration of flow at the reference gauge was nearly the same as on the project site. The data from Gauges 2, 5 and 9, taken in their entirety, show evidence of water flowing through the entire project. As a result, the Powell project serves as a fully functioning connector in the Quioccosin Swamp watershed.

Figure F1. Monitoring Gauges 2, 5 & 9 Indicating Flow in April, 2011

Powell Property Wetland Mitigation Project Albemarle Restorations, LLC 2011 Monitoring - Year 3 of 5 12

Powell Property Wetland Mitigation Project Albemarle Restorations, LLC 2011 Monitoring - Year 3 of 5 13

2.2 <u>Wetland Monitoring Plan View (Integrated)</u>

Figure 4 in Appendix D provides an overview of the areas where subsoiling has corrected hydrology problems around Gauges 6 and 7.

	Table VI. 2011 Hydrology and Vegetation Criteria Success by Plot Powell Wetland and Stream Mitigation Project/EEP #D06065-B					
Gauge	Hydrology Success Met (% hydroperiod)	Hydrology Mean	Vegetation Plot	Vegetation Success Met (Stems/Acre)	Vegetation Mean	
1	Y (13%)		1	Y (495)		
2	Y (26%)		2	Y (330)		
3	Y (26%)		3	Y (330)		
4	Y (9%)		4	Y (371)		
5	Y (26%)		5	Y (495)		
6	Y (26%)		6	Y (371)		
7	Y (8%)	1000	7	Y (330)	100%	
7A	Y (6%)	100%	No Plot		100%	
7B	Y (8%)		No Plot			
8	Y (26%)		8	Y (577)		
9	Y (26%)		9	Y (371)		
10	Y (21%)		10	Y (454)		
11 (Ref)*	26%		No Plot			
12 (Ref)*	26%		No Plot			

* Gauges 11 & 12 are reference gauges and not included in the hydrology mean

3.0 Project Success Discussion

After the third year of monitoring and corrective action in the form of subsoiling to correct hydrology issues, the wetland hydrology on the Powell project shows indications of successful restoration. Specifically, the hydrology within the swamp run has been restored and the project is functioning like a natural riparian headwater system. Flow of water across the site was successfully measured and documented on two separate occasions in 2011.

The reference gauges are measuring very similar above- and below-ground water patterns at the reference site as those measured on the project, confirming that the site is functioning like a natural system. Overall tree survival and growth is good.

Listed below are the field indicators from the approved mitigation plan that are to be used to help substantiate flow. Those shown in <u>blue</u> were observed and/or video or photo documented in 2009, 2010 or 2011.

- A natural line impressed on the bank
- Shelving

Powell Property Wetland Mitigation Project14Albemarle Restorations, LLC2011 Monitoring - Year 3 of 5

- Changes in soil characteristics
- Destruction of terrestrial vegetation
- <u>Presence of litter and debris</u>
- <u>Wracking</u>
- Vegetation matted down or absent
- <u>Sediment sorting</u>
- Leaf litter disturbed or washed away
- <u>Scour</u>
- Deposition
- Bed and bank formation
- <u>Water staining</u>
- <u>Change in plant community</u>

High water marks on bank vegetation were noted and photographed during December of 2009 after heavy rainfall. Matted vegetation was noted and photographed in April of 2010, the remnants of winter flooding. Further evidence of flow is deposition of small detritus after flow events as well as some scouring in the mid portion of the project. Wracking can be seen among the vegetation downstream after heavy rains. Sediment sorting can also be seen after heavy rains.

III. <u>Methodology Section</u>

Year 3 monitoring for the Powell project occurred in September of 2011. Monitoring and vegetation sampling procedures were established in the mitigation plan for this project and no deviations were made.

Appendix A

Vegetation Data Tables

Site Photos

1. Vegetation Data Tables

Table 1. Project Metadata				
Report Prepared By	Ashby Brown			
Date Prepared	11/29/2011 11:36			
DESCRIPTION OF WORKSH	EETS IN THIS DOCUMENT			
Vigor by Spp	Frequency distribution of vigor classes listed by species.			
Damage by Spp	Damage values tallied by type for each species.			
Damage by Plot	Damage values tallied by type for each plot.			
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.			
PROJECT SUMMARY				
Project Code	D06065B			
Project Name	Powell			
Description	Powell wetland and stream mitigation			
River Basin	Chowan			
Sampled Plots	10			

Table 2. Vegetation Vigor by Species

	Species	4	3	2	1	0	Missing	Unknown
	Alnus serrulata	1						
	Celtis occidentalis		1					
	Cephalanthus occidentalis	5						
	Itea virginica	2	1	3				
	Nyssa biflora	2	2	6				
	Quercus bicolor	3	1					
	Quercus michauxii	5	2	2				
	Quercus phellos	14	5	1				
	Salix nigra	4	1					
	Taxodium distichum	17	14	2				
	Magnolia virginiana		1					
	Myrica	1	4					
TOT:	12	54	32	14				

	Species	All Damage Categories	(no damage)	(other damage)
	Alnus serrulata	1	1	
	Celtis occidentalis	1	1	
	Cephalanthus occidentalis	5	5	
	Itea virginica	6	6	
	Magnolia virginiana	1	1	
	Myrica	5	5	
	Nyssa biflora	10	9	1
	Quercus bicolor	4	4	
	Quercus michauxii	9	9	
	Quercus phellos	20	20	
	Salix nigra	5	5	
	Taxodium distichum	33	33	
TOT:	12	100	99	1

Table 3. Vegetation Damage by Species

Table 4. Vegetation Damage by Plot

	Plot	All Damage Categories	(no damage)	(other damage)
	1	12	12	
	2	8	8	
	3	8	8	
	4	9	9	
	5	12	12	
	6	9	9	
	7	8	8	
	8	14	13	1
	9	9	9	
	10	11	11	
TOT:	10	100	99	1

		Plot # for Year 3													
Species	Total Planted Stems	# plots	avg# stems	1	2	3	4	5	6	7	8	9	10		
Alnus serrulata	1	1	1			1									
Celtis occidentalis	1	1	1								1				
Cephalanthus occidentalis	5	2	2.5	3							2				
Itea virginica	6	5	1.2	2		1	1				1		1		
Magnolia virginiana	1	1	1					1							
Myrica	5	2	2.5					2		3					
Nyssa biflora	10	5	2		2		1	1	2		4				
Quercus bicolor	4	2	2						3	1					
Quercus michauxii	9	3	3		2			3					4		
Quercus phellos	20	5	4	7	4	4			4	1					
Salix nigra	5	1	5								5				
Taxodium distichum	33	7	4.71			2	7	5		3	1	9	6		
Totals	100	12		12	8	8	9	12	9	8	14	9	11		
Average Stems per Acre				495	330	330	371	495	371	330	577	371	454		

Table 5. Planted Stems by Plot and Species

Overall average stocking for the site in 2011 is 412 stems per acre.

Outflow end of reference area in March 2011 shows very low water and dry conditions.

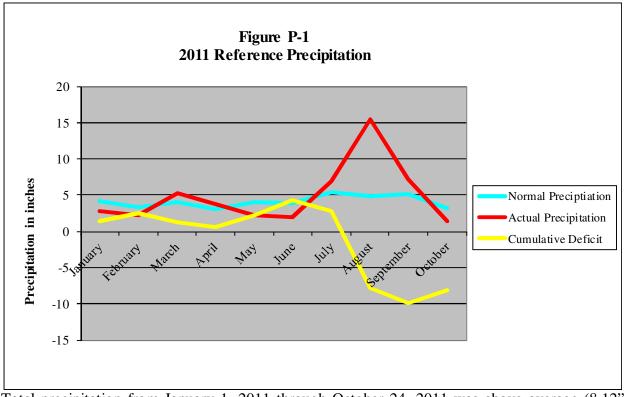
Lower end of project is not flowing in March 2011. View is looking upstream near Ga. 9.

Area around Ga. 7 in April after rainfall. Site holding water. View looking toward Ga. 7A.

Screenshot from April video #4 showing flow of sediment plume upstream from Ga. 6

Looking upstream near Gauge 9 in July (same view as second photo above).

Tree growth was good in 2011. View near Gauge 1.


	Table C-1																								
	Longest consecutive successful hydrologic period in days (and % of Growing Season) and success at 5% and 8% of the growing season																								
	Living Stems Per Acre at the end of the growing season for plots 1-10																								
Gauge			Year 1					Year 2					Year 3					Year 4	ļ				Year 5		
(Plot)	Days	%	5%	8%	SPA	Days	%	5%	8%	SPA	Days	%	5%	8%	SPA	Days	%	5%	8%	SPA	Days	%	5%	8%	SPA
1	14	6	Y	Ν	577	18	8	Y	Ν	526	30	13	Y	Y	495		1		1	1 1 1		1			
2	34	15	Y	Y	412	25	11	Y	Y	364	59	26	Y	Y	330										
3	15	6	Y	Ν	495	17	7	Y	Ν	405	59	26	Y	Y	330		1					1			
4	4	2	Ν	Ν	454	15	6	Y	Ν	445	21	9	Y	Y	371										
5	35	15	Y	Y	412	34	15	Y	Y	405	59	26	Y	Y	495		1		1 1 1	1 1 1		1			1
6	4	2	Ν	Ν	371	7	3	Ν	Ν	405	59	26	Y	Y	371										
7	7	3	Ν	Ν	371	4	2	Ν	Ν	324	19	8	Y	Y	330				1	1					
7A											13	6	Y	Ν			1		1	1		1			
7B											18	8	Y	Y											
8	39	17	Y	Y	701	38	16	Y	Y	647	59	26	Y	Y	577				1	1					
9	24	10	Y	Y	454	39	17	Y	Y	364	59	26	Y	Y	371										
10	14	6	Y	Ν	454	28	12	Y	Y	405	48	21	Y	Y	454		1 1 1								1
11 (Ref)	53	23	Y	Y		38	16	Y	Y		59	26	Y	Y											
12 (Ref)	39	17	Y	Y		36	16	Y	Y		59	26	Y	Y						1 1 1					

5% of growing season is 12 days, 8% is 19 days

Hydrology is deemed successful if longest consecutive hydrologic

period meets minimum of 5% of the growing season

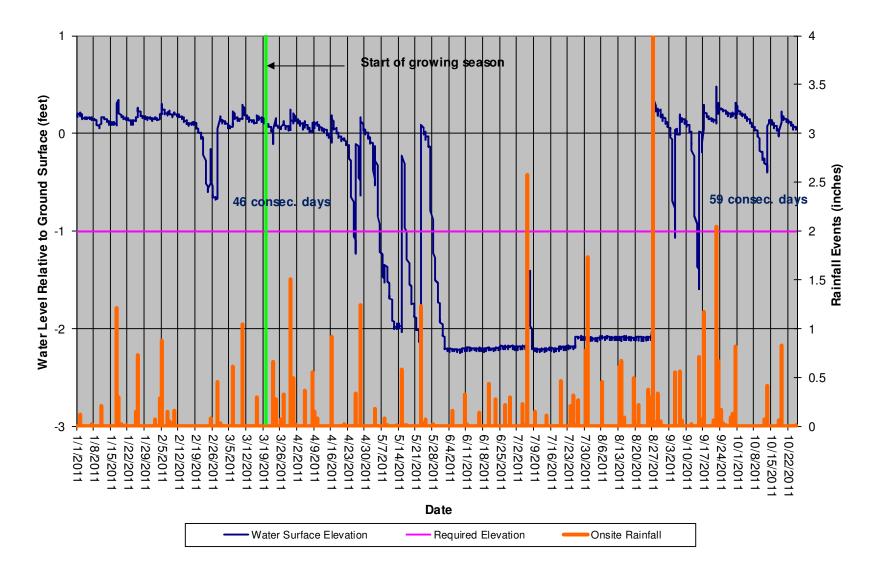
Gauges 7A and 7B were installed in Year 3 (2011)

Total precipitation from January 1, 2011 through October 24, 2011 was above average (8.12" surplus) due to 15.5" falling in August as a result of Hurricane Irene. Total rainfall through July was 2.75" below normal.

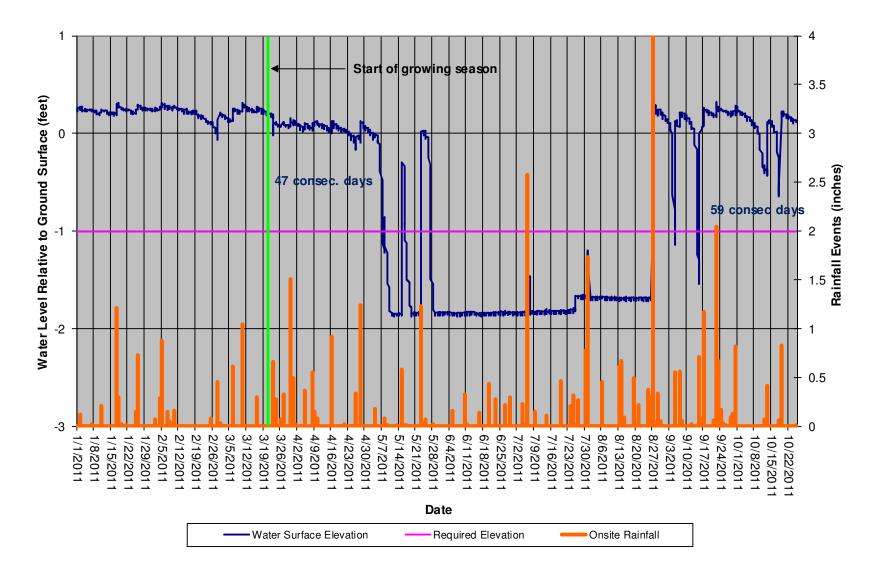
Appendix B

Geomorphologic Raw Data

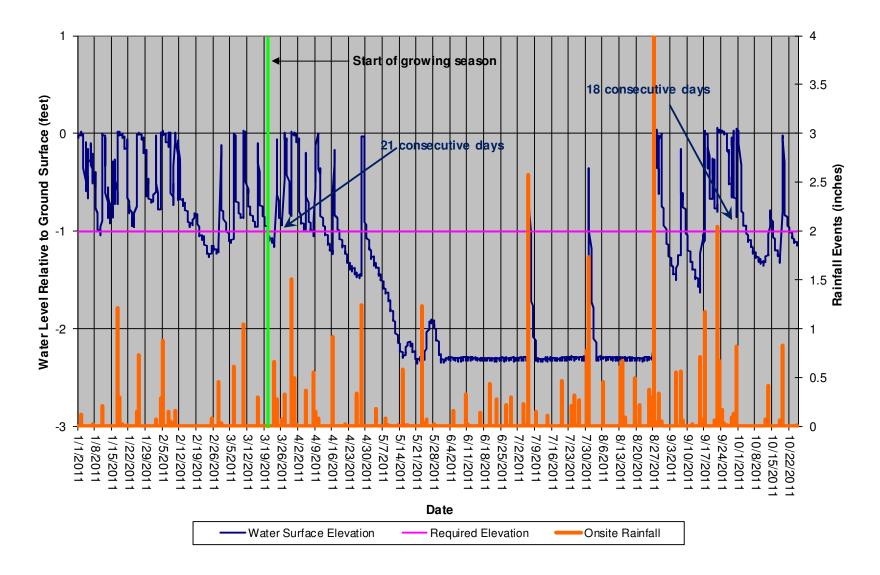
Not used in this report

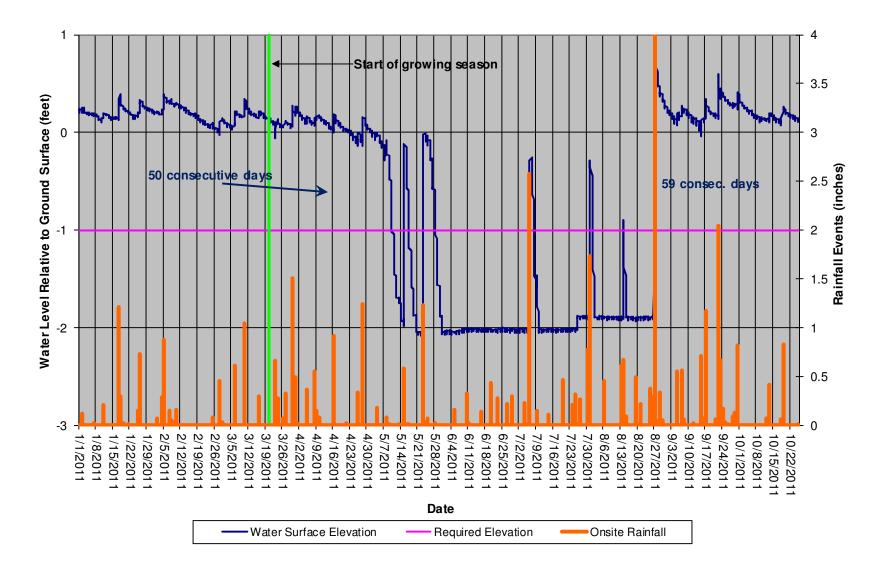

Appendix C

Hydrologic Data Tables

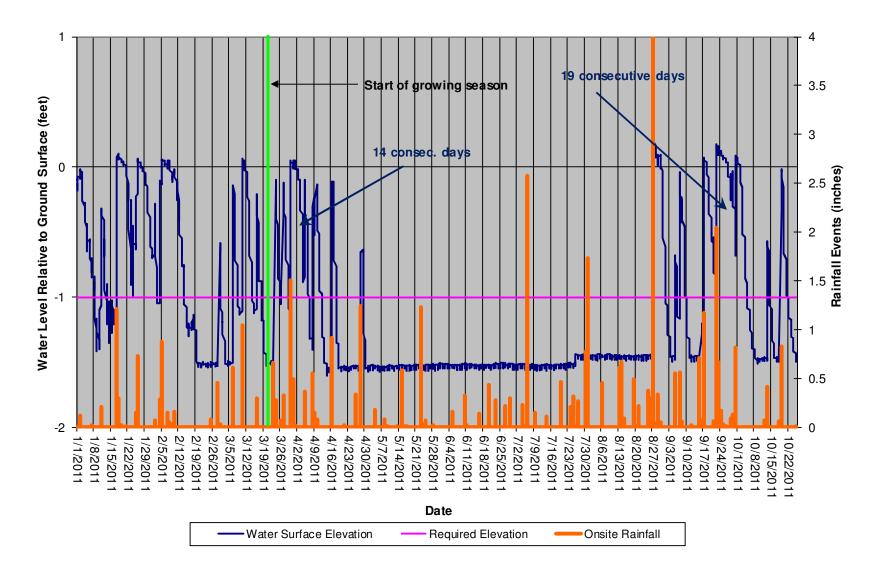

1 4 Start of growing season 22 consecutive days 3.5 Water Level Relative to Ground Surface (feet) n 3 Rainfall Events (inches) 2.5 **L**M 1 Y, 2 30 consec day -2 1.5 1 -3 0.5 -4 0 - 10/22/2011 - 10/15/2011 - 9/3/2011 1/8/2011 - 2/1 2/201 - 2/26/201 4/2/2011 - 5/7/2011 - 5/1 4/201 6/4/2011 - 6/1 1/201 7/9/2011 - 7/1 6/201 9/24/2011 8/20/2011 8/27/2011 9/1 0/201 9/17/2011 2/19/201 3/5/2011 3/1 2/201 3/19/201 3/26/201 4/9/2011 4/30/201 5/28/201 7/2/2011 7/23/2011 8/6/2011 8/13/201 10/1/2011 10/8/2011 1/1 5/201 1 1/22/2011 1/29/2011 5/21/201 6/18/201 6/25/201 7/30/201 1/1/2011 2/5/2011 4/1 6/201 4/23/201 Date **Required Elevation** Water Surface Elevation Onsite Rainfall

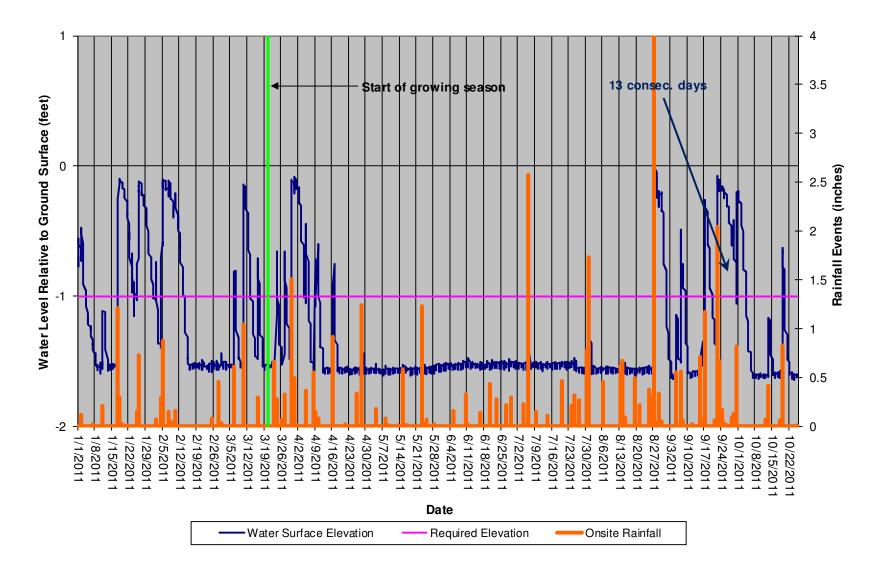
Powell Monitoring Gauge #1 (2238363)

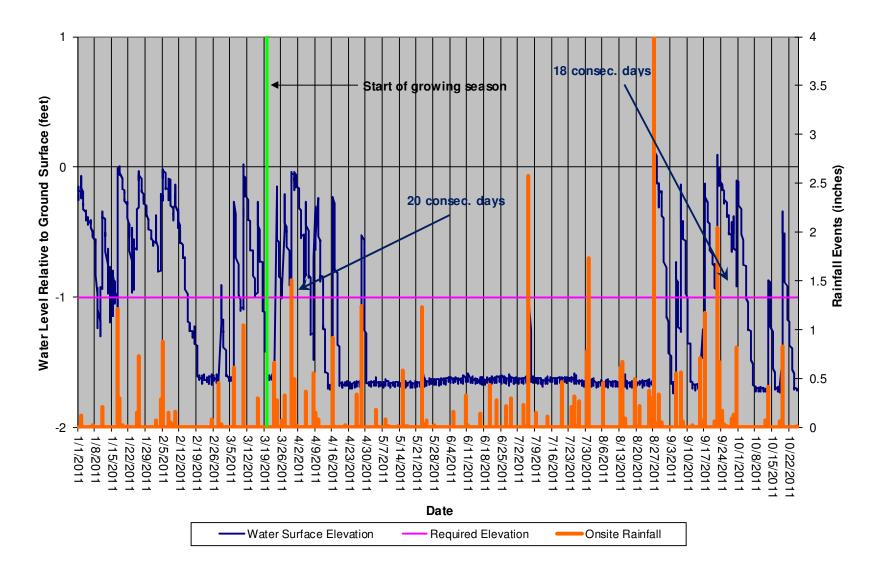

Powell Monitoring Gauge #2 (2238364)

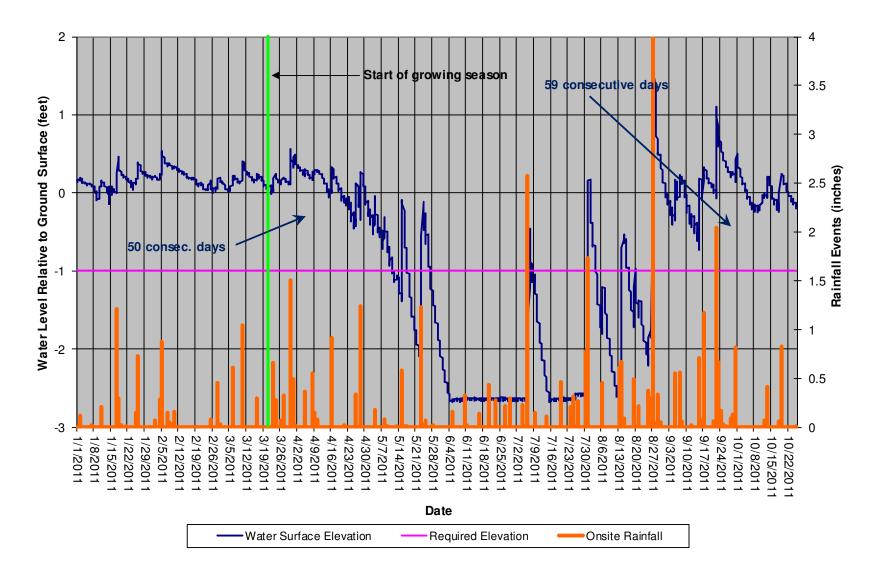

Powell Monitoring Gauge #3 (2238365)

Powell Monitoring Gauge #4 (2238366)


Powell Monitoring Gauge #5 (2238367)

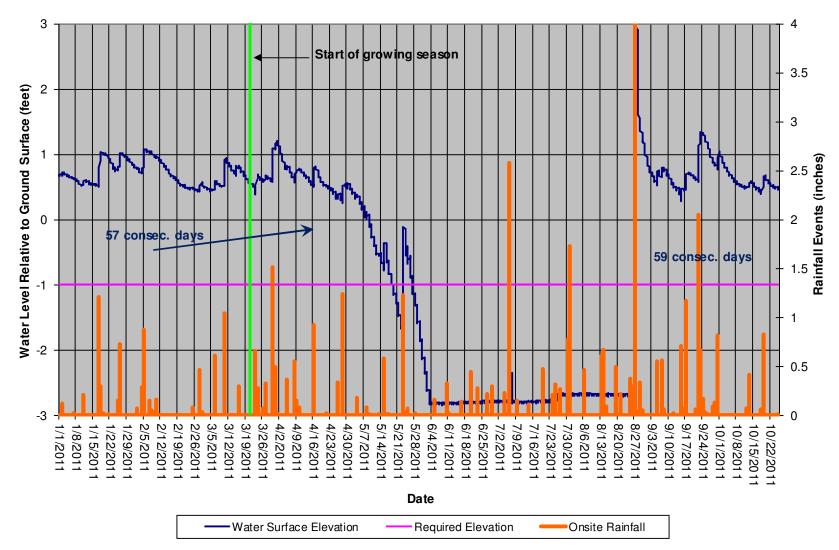

Powell Monitoring Gauge #6 (2238368)


Powell Monitoring Gauge #7 (2238369)

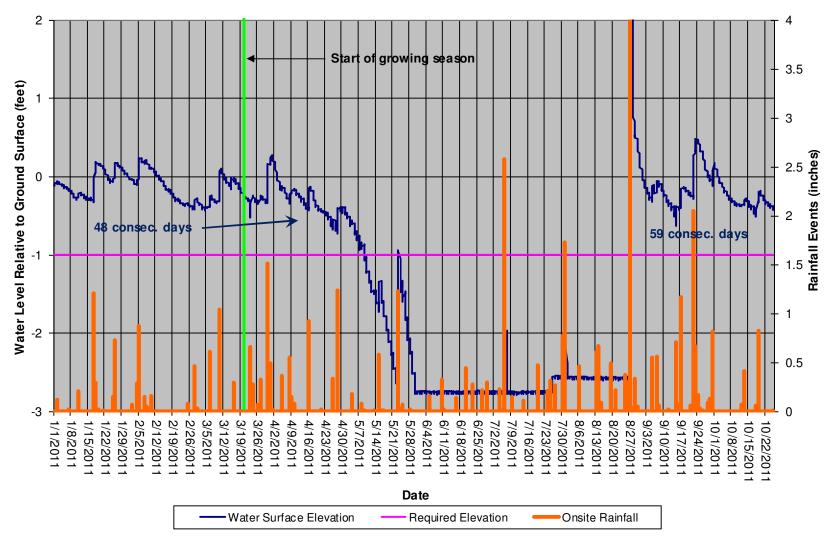

Powell Monitoring Gauge #7 A (9669813)

Powell Monitoring Gauge #7 B (9669819)

Powell Monitoring Gauge #8 (2238370)

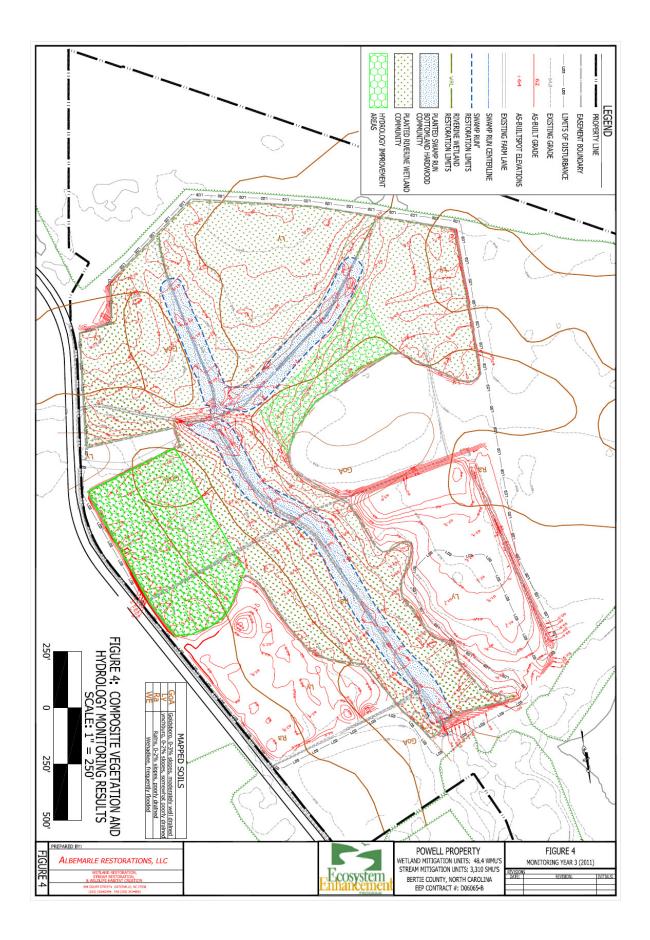


2 4 Start of growing season 3.5 Water Level Relative to Ground Surface (feet) 3 Rainfall Events (inches) 2.5 0 57 consec. days 2 59 consec. days 1.5 1 -2 0.5 -3 0 - 10/22/2011 - 10/15/2011 - 9/3/2011 - 2/1 2/201 - 6/4/2011 1/8/2011 - 2/26/201 - 4/2/2011 - 5/7/2011 - 5/1 4/201 - 6/1 1/201 7/9/2011 - 7/1 6/201 9/24/2011 8/20/2011 8/27/2011 9/1 0/201 1 9/17/2011 2/19/201 3/5/2011 3/1 2/201 3/19/201 3/26/201 4/30/201 5/28/201 7/2/2011 7/23/2011 8/6/2011 8/13/201 10/1/2011 10/8/2011 1/1 5/201 1 1/22/2011 1/29/2011 4/9/2011 5/21/201 6/18/201 6/25/201 7/30/201 1/1/2011 2/5/2011 4/1 6/201 4/23/201 Date Required Elevation Water Surface Elevation Onsite Rainfall


Powell Monitoring Gauge #9 (2238371)

2 4 Start of growing season 40 days consec. 3.5 Water Level Relative to Ground Surface (feet) 3 0 consec. 48 days 1 -2 0.5 -3 0 - 10/22/2011 - 10/15/2011 - 2/26/201 - 6/4/2011 - 6/11/201 - 7/16/201 - 7/23/201 1 - 9/3/2011 . 1/22/201 - 5/7/2011 - 7/9/2011 1/8/2011 2/12/2011 2/19/2011 3/19/201 3/26/201 4/2/2011 5/14/201 6/18/201 6/25/201 8/20/201 9/10/2011 9/17/2011 9/24/201 1 3/5/2011 3/12/201 4/30/201 5/21/201 5/28/201 7/2/2011 8/6/2011 8/13/201 8/27/201 1 10/1/2011 10/8/2011 1/1/2011 1/15/2011 1/29/2011 2/5/2011 4/9/2011 4/16/201 4/23/201 7/30/201 Date Onsite Rainfall Water Surface Elevation **Required Elevation**

Powell Monitoring Gauge #10 (2238372)


Powell Monitoring Gauge #11 (2250036) Reference

Powell Monitoring Gauge #12 (2250037) Reference

Appendix D

Problem Areas Plan View (Integrated)

